Multipole Expansion of Electromagnetic Scattering Wave by a Small Cylindrical Pore on a Perfect Conducting Semi-infinite Half Space
نویسندگان
چکیده
The scattering of an oblique electromagnetic wave incident on a sub-wavelength circular pore with a finite depth on the surface of a semi-infinite perfect conductor is investigated analytically. We use the method of matched asymptotic expansion to find the multipole structure. The expansion is based on the duality property of the source-free Maxwell equations, and the resultant scattering fields are fully expressed in terms of the scalar and the conjugate vector potentials. There are two regions defined by the analytical method: the electro/magneto-static inner region and the radiation outer wave region. For both TM and TE incidences, the scattering waves are lead by leading dipoles. In the next order of the scattering waves, a mixture of the dipole, the quadrupole and the octupole is found. This is a striking finding, that the multipoles are not organized in a strictly ascending manner when the size of the pore is considered. In addition, the sophisticated three-dimensional interplay of the multipoles, the pore depth, and the incident angle is revealed. The magnitudes of the scattering dipoles are confirmed convergent smoothly to those of the back-scattering dipoles of electromagnetic waves transmitted through a hole in a perfect conducting plate with a finite thickness when the pore depth is larger than about 1, normalize to the pore radius. Received 30 June 2010, Accepted 17 September 2010, Scheduled 15 October 2010 Corresponding author: C. Y. Kuo ([email protected]). 180 Kuo, Chern, and Chang
منابع مشابه
Oblique Rayleigh wave scattering by a cylindrical cavity
The problem of oblique wave scattering of a Rayleigh wave by a cylindrical cavity in an elastic half-space is solved using the multipole expansion method. Whereas in the analogous water-wave problem a single scalar field is expressed as an infinite multipole expansion, and in the Rayleigh wave case with normal incidence two scalar fields suffice, here we require three coupled scalar multipole e...
متن کاملElectromagnetic Scattering from a Perfect Electromagnetic Conductor Cylinder Buried in a Dielectric Half-space
An analytical solution is presented for the electromagnetic scattering from a perfect electromagnetic conducting circular cylinder, embedded in the dielectric half-space. The solution utilizes the spectral (plane wave) representations of the fields and accounts for all the multiple interactions between the buried circular cylinder and the dielectric interface separating the two half spaces.
متن کاملDisplacement Field Due to a Cylindrical Inclusion in a Thermoelastic Half-Space
In this paper, the closed form analytical expressions for the displacement field due to a cylindrical inclusion in a thermoelastic half-space are obtained. These expressions are derived in the context of steady-state uncoupled thermoelasticity using thermoelastic displacement potential functions. The thermal displacement field is generated due to differences in the coefficients of linear therma...
متن کاملRecent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics
This article is mainly devoted to a review on fast BEMs for elastodynamics, with particular attention on time-harmonic fast multipole methods (FMMs). It also includes original results that complete a very recent study on the FMM for elastodynamic problems in semi-infinite media. The main concepts underlying fast elastodynamic BEMs and the kernel-dependent elastodynamic FM-BEM based on the diago...
متن کاملElectromagnetic scattering in a discrete basis
In this dissertation, I use discrete eigenfunction expansions to study three electromagnetic scattering problems in the frequency domain. Chapter 2 describes an eddy-current coil interacting with a perfectly conducting wedge of arbitrary angle. A closed-form expression for the impedance of a tangential eddy-current coil in the presence of an infinite conducting wedge of arbitrary angle is deriv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010